Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Fang Li,* Ya-Qing Feng, Bo Gao and Nan Li

School of Chemical Engineering and
Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
Ixf7212@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.061$
$w R$ factor $=0.170$
Data-to-parameter ratio $=16.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4'-(4-Chlorophenyl)-1'-methyl-4", $5^{\prime \prime}, 6^{\prime \prime}, 7^{\prime \prime}-$ tetrahydro-1H-indole-3-spiro-2'-pyrrolidine-3^{\prime}-spiro- $2^{\prime \prime}$-(thiazolo[3,2-a]pyrimidine)-2(3H),$3^{\prime \prime}\left(2^{\prime \prime} H\right)$-dione

The title compound, $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{~S}$, was synthesized by the intermolecular [3+2]-cycloaddition of azomethine ylide, derived from isatin and sarcosine by a decarboxylative route, and 2-(4-chlorobenzylidene)-6,7-dihydro-5 H -thiazolo[3,2-a]-pyrimidin-3-one. In the molecule, the two spiro junctions link a planar 2 -oxindole ring, a pyrrolidine ring in an envelope conformation and a 6,7-dihydro-5 H -thiazolo[3,2-a]pyrimidin3 -one ring. Two molecules are connected into a dimer by two $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds

Comment

Spiro-compounds represent an important class of naturally occurring substances, which in many cases exhibit important biological properties (Kobayashi et al., 1991; James et al., 1991). 1,3-Dipolar cycloaddition reactions are widely used for the construction of spiro-compounds (Caramella \& Grunanger, 1984). In this paper, the structure of the title compound, (I), is reported.

(I)

The compound was synthesized by the intermolecular [$3+2]$-cycloaddition of an azomethine ylide, derived from isatin and sarcosine by a decarboxylative route, and 2-(4-chlorobenzylidene)-6,7-dihydro-5 H -thiazolo[3,2-a]pyrimidin-3-one. The molecular structure of (I) is shown in Fig. 1.

There are two spiro junctions in the molecule, which consists of a planar 2-oxindole ring, a pyrrolidine ring in an envelope conformation and a thiazolo[3,2-a]pyrimidine ring. Two molecules are connected into a centrosymmeric dimer by $\mathrm{N} 3-\mathrm{H} \cdots \mathrm{N} 2^{\mathrm{i}}$ hydrogen bonds [symmetry code: (i) $2-x, y$, $\left.\frac{1}{2}+z\right]$, with an $\mathrm{N} \cdots \mathrm{N}$ distance of 2.855 (2) \AA and an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ angle of 166.9 (3) ${ }^{\circ}$ (Fig. 2). The structure of 4^{\prime}-(4-methoxy-phenyl)-1'-methyl-4" $, 5^{\prime \prime}, 6^{\prime \prime}, 7^{\prime \prime}$-tetrahydro- $1 H$-indole-3-spiro-2^{\prime}-pyrrolidine- 3^{\prime}-spiro- $2^{\prime \prime}$-(thiazolo[3,2-a]pyrimidine)-2(3H),$3^{\prime \prime}\left(2^{\prime \prime} H\right)$-dione has been reported previously (Li et al., 2003).

Received 8 September 2003
Accepted 12 September 2003
Online 7 October 2003

Figure 1
The molecular structure of (I), drawn with 30% probability displacement ellipsoids.

Figure 2
The crystal packing of (I), viewed along the b axis. Intermolecular N $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are shown as dashed lines.

Experimental

A mixture of 2-(4-chlorobenzylidene)-6,7-dihydro-5H-thiazolo[3,2-a]pyrimidin-3-one $(1 \mathrm{mmol})$, isatin $(1 \mathrm{mmol})$ and sarcosine $(1 \mathrm{mmol})$ was refluxed in methanol (60 ml) until the disappearance of the starting material, as evidenced by thin-layer chromatography. When the reaction was complete, the solvent was removed in vacuo and the residue was separated by column chromatography (silica gel, petroleum ether/ethyl acetate $=5: 1$), giving the title compound, (I). IR $(\mathrm{KBr}): 3351.4(-\mathrm{NH}), 1724.4,1689.7(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(\delta$,
p.p.m.): $1.18\left(m, 1 \mathrm{H},-\mathrm{CH}_{2}\right), 1.66\left(m, 1 \mathrm{H},-\mathrm{CH}_{2}\right), 2.27(s, 3 \mathrm{H}, \mathrm{N}-$ $\left.\mathrm{CH}_{3}\right), 3.35\left(m, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.38\left(m, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.69\left(m, 1 \mathrm{H},-\mathrm{CH}_{2}\right)$, $4.09\left(m, 1 \mathrm{H},-\mathrm{CH}_{2}\right), 4.59(m, 1 \mathrm{H},-\mathrm{CH}), 6.82-7.53(m, 8 \mathrm{H}, \mathrm{ArH})$, $8.50(\mathrm{bs}, 1 \mathrm{H},-\mathrm{NH}) ; 20 \mathrm{mg}$ of (I) was dissolved in 15 ml dioxane and the solution was kept at room temperature for 15 d ; natural evaporation gave colorless single crystals of (I) suitable for X-ray analysis.

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=452.95$
Monoclinic, $C 2 / c$
$a=22.308$ (8) A
$b=13.224$ (5) \AA
$c=15.054$ (6) \AA
$\beta=102.250(8)^{\circ}$
$V=4340(3) \AA^{3}$
$Z=8$
$D_{x}=1.386 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1009
reflections
$\theta=3.0-26.2^{\circ}$
$\mu=0.30 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.40 \times 0.22 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.769, T_{\text {max }}=0.942$
17147 measured reflections
4454 independent reflections
2952 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.054$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-27 \rightarrow 27$
$k=-15 \rightarrow 16$
$l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \text { H-atom parameters constrained } \\
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.084 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.57 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.57 \mathrm{e}^{-3}
\end{aligned}
$$

H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$, and refined with a riding model, with $U_{\text {iso }}(H)=1.2 U_{\text {eq }}$ (carrier).

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Caramella, P. \& Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291-312. New York: Wiley.
James, D. M., Kunze, H. B. \& Faulkner, D. J. (1991). J. Nat. Prod. 54, 11371140.

Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H. Ishibashi, M., Sasaki, T. \& Mikami, Y. (1991). Tetrahedron, 47, 6617-6622.
Li, X.-F., Feng, Y.-Q., Shi, D.-X. \& Chen, H.-L. (2003). Acta Cryst. E59, o1418o1419.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

